PHENIX at the MEIC?

MEIC layout at the JLab site

~2.2 km circumference

Electron ring from SLAC (PEP-II)

2 interaction regions

12 GeV CEBAF used as injector

Fixed target infrastructure (including detectors) would remain

MEIC-IP1 interaction region

ePHENIX dropped into IP1

Compton polarimeter and Low-Q2 tagger chicane (~25 m)

- Not ideal since forward HCAL not compatible with first dipole
 - Could work for sPHENIX with a different endcap design

MEIC-IP1 and ePHENIX detectors

MEIC-IP1 detector

- The central detector concepts developed at JLab (MEIC-IP1) and BNL (ePHENIX) are generally similar, but offer complementary capabilities
 - Central tracker technologies
 - Endcap Cherenkov detectors
 - HCal location and coverage
 - Forward dipole in front of FFQs

MEIC-IP1 detector

- Focus: SIDIS and exclusive
- Forward HCal optional (integrated with dipole?)
- Lots of space for PID

ePHENIX

- Focus on jet-physics
- Good HCal coverage
- No intermediate tracker
- Asymmetric endcaps possible/desirable?

MEIC-IP1 and ePHENIX detectors

MEIC-IP1 detector

- The MEIC-IP1 detector is designed around an identical solenoid as sPHENIX (4 m long, 3 m diameter)
 - CLEO solenoid or new magnet
- The IP location is doubly asymmetric
 - Inside the coil (1.6 m + 2.4 m)
 - Endcaps (1.4 m and 2.6 m)
 - HCal could go outside of forward ion dipole (first ion FFQ is 7 m from IP)
- Luminosity scales linearly with total distance between ion FFQs – but the IP does not have to be in the middle!
- ePHENIX at eRHIC has a doubly symmetric location
 - IP in the middle of coil (2+2 m)
 - Both FFQs are located 4.5 m away
 - Easy to keep former but adjust latter!
 - Suggestion: use 4 + 5 m distance!
 - More space for ion-side encap!

Endcap PID

- The initial stage of the MEIC will not post-accelerate electrons from CEBAF giving a 12 GeV max energy.
- A relatively inexpensive threshold Cherenkov can provide π/K separation up to 9 GeV on the electron endcap.
 - Would also work at eRHIC
- EM calorimetry in electron endcap follows the proved formula from CLAS with an inner crystal calorimeter and a cheaper outer one.
- More space on the ion side allows for a dual-radiator RICH, conceptually similar to the one at LHCb, with mirrors in the shadow of the barrel detectors.

 $\beta_x(m), \beta_y(m)$

Luminosity is proportional to the total distance between FFQs

FFQ gradients are proportional to the 1/distance to the IP

FFQ peak fields are gradient x aperture

- Large aperture only needed downstream
- Asymmetric endcaps generally make life a little easier...

Crossing angle: can be up to 50 mrad

ePHENIX@IP2 electron optics

Small-diameter electron quad

- 1. Could use MgB₂ windings ~same gradient, operating at 10K.
- 2. Could incorporate an active shield winding to kill fringe field @ e-beam

Electron polarimetry

- Experience from HERA: uncertainty > 1%
 - Limited to detection of Compton photon only
 - Accelerator limitations (non-colliding bunches)
- Experience from JLab and SLAC
 - SLD at SLAC reached 0.5% detecting the Compton electron
 - Compton polarimeters in Halls A and C at JLab reach ~1% detecting both the photon and the electron for cross check
 Laser at Chicane center ensures that polarization is identical to IP

Polarimetry options at the two IPs

- One IP (which one?) will have larger version of the JLab Compton chicane
 - Detection of both electron and photon, the latter with low synchrotron background
- Second IP will have a similar chicane optimized for electron detection
 - Goal is to push the uncertainty of the polarimeter towards what SLAC achieved